Porous ice phases with VI and distorted VII structures constrained in nanoporous silica.

نویسندگان

  • Jinlong Zhu
  • Zewei Quan
  • Yu-Shen Lin
  • Ying-Bing Jiang
  • Zhongwu Wang
  • Jianzhong Zhang
  • Changqing Jin
  • Yusheng Zhao
  • Zhenxian Liu
  • C Jeffrey Brinker
  • Hongwu Xu
چکیده

High-pressure compression of water contained in nanoporous silica allowed fabrication of novel porous ice phases as a function of pressure. The starting liquid nanoporous H2O transformed to ice VI and VII at 1.7 and 2.5 GPa, respectively, which are 0.6 and 0.4 GPa higher than commonly accepted pressures for bulk H2O. The continuous increase of pressure drives the formation of a tetragonally distorted VII structure with the space group I4mm, rather than a cubic Pn3m phase in bulk ice. The enhanced incompressibility of the tetragonal ice is related to the unique nanoporous configuration, and the distortion ratio c/a gradually increases with increasing pressure. The structural changes and enhanced thermodynamic stability may be interpreted by the two-dimensional distribution of silanol groups on the porous silica surfaces and the associated anisotropic interactions with H2O at the interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of the nanoporous silicon structures by magnesiothermic reduction of the as-synthesized silica

Nanoporous silicon powder was produced via efficient magnesiothermic reduction. In this work, the thermal effect and reduction process time were investigated on the porous silicon structure. The nanoporous silicon powders were characterized by  X-ray diffraction analysis and field emission scanning electron microscopy. The results demonstrate that porous structure was changed to homogeneous and...

متن کامل

Improvement in Immobilization of Bread Yeasts by Sol-gel Method Combined with Functionalized Nanoporous Silica (LUS-1)

In this work, the effect of immobilization of bread yeast (Saccharomyces cerevisiae) by sol-gel technique combined with functionalized nanoporous silica was investigated in different weight ratios of silica containing materials (TMOS: LUS-1). The activities of immobilized yeast in days after immobilization were examined. The results showed immobilization maintain the yeast life for a longer tim...

متن کامل

Improvement in Immobilization of Bread Yeasts by Sol-gel Method Combined with Functionalized Nanoporous Silica (LUS-1)

In this work, the effect of immobilization of bread yeast (Saccharomyces cerevisiae) by sol-gel technique combined with functionalized nanoporous silica was investigated in different weight ratios of silica containing materials (TMOS: LUS-1). The activities of immobilized yeast in days after immobilization were examined. The results showed immobilization maintain the yeast life for a longer tim...

متن کامل

Assessment of density functional theory to calculate the phase transition pressure of ice.

To assess the accuracy of density functional theory (DFT) methods in describing hydrogen bonding in condensed phases, we benchmarked their performance in describing phase transitions among different phases of ice. We performed DFT calculations of ice for phases Ih, II, III, VI and VII using BLYP, PW91, PBE, PBE-D, PBEsol, B3LYP, PBE0, and PBE0-D, and compared the calculated phase transition pre...

متن کامل

The low-temperature proton-ordered phases of ice predicted by ab initio methods.

The low-temperature proton-ordered counterparts for ice-Ih, ice-III, ice-VI and ice-VII are investigated by first principle methods in conjunction with a graph enumeration technique. Two experimentally well calibrated disorder/order transitions, ice-Ih/ice-XI and ice-VII/ice-VIII, are used to validate the methodology we used herein and in both cases our approach is able to reproduce major exper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 11  شماره 

صفحات  -

تاریخ انتشار 2014